什么是正弦定理?
正弦定理在任意一个平面三角形中,每条边跟它所对角的正弦值的比相等且等于外接圆的直径”。即a/sinA = b/sinB = c/sinC = 2r = D其中,r为外接圆的半径,D 为外接圆的直径。
延伸阅读
正弦余弦定理公式,谢谢?
1、正弦定理:a/sinA=b/sinB=c/sinC=2R
2、余弦定理:cos A=(b2+c2-a2)/2bc。
正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值。
(1)二倍角公式:
(a)sin2a=2×sina×cosa
(b)cos2a=cosa^2-sina^2=2cosa^2-1=1-2sina^2
(c)tan2a= 2tana/(1-tana^2)
(2)以正切表示二倍角
(a)sin2a= 2tana/(1+tana^2)
(b)cos2a= (1-tana^2)/(1+tana^2)
(c) tan2a= 2tana/(1-tana^2)
扩展资料
一、正弦定理的运用:
1、已知三角形的两角与一边,解三角形
2、已知三角形的两边和其中一边所对的角,解三角形
3、运用a:b:c=sinA:sinB:sinC解决角之间的转换关系
二、余弦定理的运用:
1、当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。
2、当已知三角形的三边,可以由余弦定理得到三角形的三个内角。
3、当已知三角形的三边,可以由余弦定理得到三角形的面积。
关于正弦定理和余弦定理的所有公式?
正弦定理:a/sinA=b/sinB=c/sinC=2R 。
余弦定理:a^2=b^2+c^2-2bc*cosA。
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA=b/sinB=c/sinC= 2r=D(r为外接圆半径,D为直径)。
余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是欧氏平面几何学基本定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题。
正弦定理余弦定理及推论?
定理:
1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 a/sinA=b/sinB=c/sinC=2R,(R是三角形外接圆半径)。
2、余弦定理: cosα=(B^2+C^2-A^2)/2BC cosb=(A^2+C^2-B^2)/2AC cosc=(A^2+B^2-C^2)/2AB 推论:
(1)任一多边形的每一条边的平方都等于其它各边的平方和并减去它们两两及其夹角余弦积的二倍. 注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的(共面或异面)夹角.。
(2)任一多面体的每一面的面积的平方都等于其它各面的面积的平方和并减去它们两两及其夹角余弦积的二倍. 注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的二面角。
(3)正切
高中正弦定理?
正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。正弦定理是解三角形的重要工具。
注意:r为三角形外接圆半径。
三角的正弦定理是什么?
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。
拓展资料
发展简史
历史上,正弦定理的几何推导方法丰富多彩。根据其思路特征,主要可以分为两种。
第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。
第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。
三角形正弦余弦定理?
三角形正弦定理,余弦定理?
一)正弦定理:三角形的边与它所对角的正弦的比相等。
即a/sinA二b/sinB二c/sinC。(比值等于三角形外接圆的直径)。
二)余弦定理:
三角形的一边的平方等于其它两边的平方和,减去这两边及夹角余弦积的二倍。
即a^2二b^2十c^2一2bccosA。
b^2=a^2十c^2一2accosB。
c^2二a^2十b^2一2abcosC。
正弦余弦正切的定理及公式是什么?
1,三角函数正弦定理公式
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。
2,三角函数余弦定理公式
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
对于边长为a、b、c而相应角为A、B、C的三角形则有:
①a2=b2+c2-2bc·cosA;
②b2=a2+c2-2ac·cosB;
③c2=a2+b2-2ab·cosC。
也可表示为:
①cosC=(a2+b2-c2)/2ab;
②cosB=(a2+c2-b2)/2ac;
③cosA=(c2+b2-a2)/2bc。
3,三角函数正切定理公式:
在三角形中,任意两条边的和除以首条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以首条边对角减第二条边对角的差的一半的正切所得的商。
对于边长为a,b和c而相应角为A,B和C的三角形,有:
①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2];
②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2];
③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。
正弦是三角学中的一个基本定理,任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径,余弦描述三角形中三边长度与一个角的余弦值关系的数学定理,正切任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
正弦:a/sinA=b/sinB=c/sinC=2R,(R是三角形外接圆半径)。
余弦:a^2=b^2+c^2-2bc*cosA,(a^2表示a的平方),b^2=c^2+a^2-2ac*cosB,(还有一个类似),
正切:tan(A-B)/2=(a-b)/(a+b)*ctanC/2。