世界上至今未解的数学难题是什么?
世界上至今未解的数学难题是哥德巴赫猜想。
哥德巴赫1742年在给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。
延伸阅读
世界十大数学难题是什么?
难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二: 霍奇(Hodge)猜想 难题”之三: 庞加莱(Poincare)猜想 难题”
之四: 黎曼(Riemann)假设 难题”
之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”
之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”
之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”
之八:几何尺规作图问题 难题”
之九:哥德巴赫猜想 难题”
之十:四色猜想
世界未解的数学难题?
1、黎曼猜想
这个可以说是数学中最重要的猜想之一,黎曼猜想研究的是素数分布问题,而素数是一切数字的基础,假如人类掌握了素数分布的规律,那么能轻松解决很多知名的数学难题。
2、N-S方程的解
纳维-斯托克斯方程是否有解析解?
该方程描述的是粘性流体流动问题,本身是一个偏微分方程,其解极其复杂,目前只能在一定范围内求数值解,至于解析解,是否存在都不知道!
3、P-NP问题
该问题在数学中极为重要,涉及计算机算法中的最优解的存在性问题。
4、ABC猜想:若d是abc不同素因数的乘积,d通常不会比c小太多?
5、哥德巴赫猜想:即任一大于2的偶数都可写成两个素数之和?
6、孪生素数猜想:存在无穷多个素数p,使得p + 2是素数?
7、冰雹猜想:任意一个自然数,如果是个奇数,则下一步变成3N+1,如果是个偶数,则下一步变成N/2,最终都能回到1?
8、大数分解问题:对于任意大数,分解为素数乘积的最佳算法?
9、丢番图问题:整数方程的可解性判断?
10、哥德尔不完备性定理的边界:如何判断一个数学难题,是否属于数学哥德尔不完备性问题?
11、无理数问题:无理数和超越数如何判断?
12、梅森素数问题:梅森素数是否有限?
世界七大数学难题?
这七个“世界难题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想。这七个问题都被悬赏一百万美元。1.NP完全问题
例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。
2.霍奇猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完好的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
3.庞加莱猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
在2002年11月和2003年7月之间,俄罗斯的数学家格里戈里·佩雷尔曼在发表了三篇论文预印本,并声称证明了几何化猜想。
在佩雷尔曼之后,先后有2组研究者发表论文补全佩雷尔曼给出的证明中缺少的细节。这包括密西根大学的布鲁斯·克莱纳和约翰·洛特;哥伦比亚大学的约翰·摩根和麻省理工学院的田刚。
2006年8月,第25届国际数学家大会授予佩雷尔曼菲尔兹奖。数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。
4.黎曼假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
黎曼假设之否认:
其实虽然因素数分布而起,但是却是一个歧途,因为伪素数及素数的普遍公式告诉我们,素数与伪素数由它们的变量集决定的。具体参见伪素数及素数词条。
5.杨-米尔斯存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
6.纳卫尔-斯托可方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
7.BSD猜想
数学家总是被诸如
那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方程是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。相反,如果z(1)不等于0。那么只存在着有限多个这样的点。
世界数学七大难题哪个最难?
1、黎曼猜想:黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德-黎曼于1859年提出。虽然在知名度上,黎曼猜想不及费尔马猜想和哥德巴赫猜想,但它在数学上的重要性要远远超过后两者,是当今数学界最重要的数学难题。
2、霍奇猜想:霍奇猜想可以说难道几乎所有的数学家,猜想表达能够将特定的对象形状,在不断增加维数的时候粘合形成一起,看似非常的巧妙,但在实际的操作过程中必须要加上没有几何解释的部件。
3、BSD猜想:BSD猜想,全称贝赫和斯维纳通-戴尔猜想,它描述了阿贝尔簇的算术性质与解析性质之间的联系。
4、欧几里得第五公设:欧几里得第五公设:同一平面内的两条直线与第三条直线相交,若其中一侧的两个内角之和小于二直角,则该两直线必在这一侧相交。因它与平行公理是等价的,所以又称为欧几里得平行公设,简称平行公设。
5、NP完全问题:NP完全问题可以说是一个听着就很复杂的数学问题,简单的讲所有的完全多项式在非确定性的问题,都可以被转化为名为满足性的逻辑运算问题,数学家们猜想的是到底有没有一个确定性的算大。
6、庞加莱猜想:庞加莱猜想提出来很长时间了,猜想中提到如果不断的去扯一个橡皮筋,然后让它慢慢于移动伸缩为一个点,最终能否证明三维球面或者是四维空间中的和原点有距离的全部问题,简直就是很困难了。
7、纳维-斯托克斯方程:这个数学问题本是数学家们用来研究无论是在微风还是在湍流等情况下,都能用纳卫尔-斯托可的方程式做出相应的数据解答,但是到目前能完全理解纳卫尔-斯托可方程式的人少之又少,而且有些理论的实质进展很微妙。
世界数学未解的难题有哪些?
世界三大数学难题分别是哥德巴赫猜想、费玛大定理、四色问题。
首先,任何排名都是见仁见智的,没有前后上下之分。
1、哥德巴赫猜想
哥德巴赫1690年 3 月 18 日生于普鲁士柯尼斯堡;1764年11月20日卒于俄国莫斯科。著名数学家,宗教音乐家。最有名的理论就是“歌德巴赫猜想”。
简述:1742年6月7日,歌德巴赫在给欧拉的信中提出:每一个大于2的偶数都是两个素数的和。欧拉在同年6月30日的回信中说他相信这个猜想,但他不能证明。历代数学家都试探过,但直到250多年后的今天,还没有人能完全证明这个猜想。
内容:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”