不等式的七个性质及证明
不等式的性质:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。
基本性质
如果x>y,m>n,那么x+m>y+n;
如果x>y>0,m>n>0,那么xm>yn;
如果x>y,y>z;那么x>z;(传递性)
如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数);
如果x>y,z>0,那么xz>yz,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;
如果x>y,z<0,那么xz<yz,即不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变;
如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变。
特殊性质:
不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;
不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;
不等式的两边同时乘(或除以)同一个负数,不等号的方向变。
延伸阅读
不等式七个性质
不等式的性质:
①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。
不等式的基本性质
不等式的基本性质
基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变,
基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变
基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变
扩展资料
①对称性:如果x>y,那么y<x;如果y<x,那么x>y
②传递性:如果x>y,y>z;那么x>z
③加法单调性,即同向不等式可加性:如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变
④乘法单调性:如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变
⑤同向正值不等式可乘性:如果x>y,z<0,那么xz<yz, 即不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变
⑥正值不等式可乘方:如果x>y,m>n,那么x+m>y+n
⑦正值不等式可开方:如果x>y>0,m>n>0,那么xm>yn
⑧倒数法则:如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数
不等式的九种基本性质
不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的基本性质:
1、对称性。
2、如果x>y,y>z;那么x>z;(传递性)。
3、如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变。
4、如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变。
5、不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变。
6、如果x>y,m>n,那么x+m>y+n。
7、如果x>y>0,m>n>0,那么xm>yn。
8、如果x>y>0,那么x的n次幂>y的n次幂(n为正数)。
不等式的基本性质的另一种表达方式:
1、对称性。
2、传递性。
3、加法单调性,即同向不等式可加性。
4、乘法单调性。
5、同向正值不等式可乘性。
6、正值不等式可乘方。
7、正值不等式可开方。
8、倒数法则。