光合作用的过程
如果将植物的叶片放在显微镜下,我们可以看到在植物植物里有着一个个绿色小体,此乃绿叶体。
而如果将这些叶绿体再放大,即可看见里面堆着一个个扁平的类囊体,而这些类囊体就是光合反应的关键所在。
类囊体是单层膜结构,上面存在着光合色素和电子传递链的结构组分。
光合色素是将光能转化为化学能的重要基础,包括叶绿素和类胡萝卜素。
其中,叶绿素分为叶绿素a和叶绿素b,其比例大约为3:1,而总叶绿素和类胡萝卜素的比例也约为3:1。
叶绿素中,只有极少部分的叶绿素a具有将光子转化为化学能的作用(中心色素),而其它的所有光合色素(聚光色素)则唯一的作用是收集光子并将其传递给前者(中心色素)。
当光子照射在类囊体上,类囊体上绝大多数光合色素(聚光色素)会收集它,并将其传递给那些可以转化光子的叶绿素。
中心色素包括光能转换色素分子、电子受体和电子供体。
当中心色素的光能转换色素分子被光子激活后,其会释放电子给电子受体,而自身带正电荷(处于氧化态),而电子受体带负电荷成还原态。
随后,光能转换色素分子会从周围的电子供体摄取电子,成为还原态。
如此,当氧化-还原反应不断地进行,电子就在一个个受体、供体间进行了传递,直到传递给最终的电子供体。
我们常见的能够释放氧气的光合作用系统中,都具有长波光系统(PSⅠ)和短波光系统(PSⅡ)两个光系统。
光系统Ⅰ(PSⅠ)能被波长700 nm的光激发,又称P700;光系统Ⅱ(PSⅡ)吸收高峰为波长680 nm处,又称P680。
PSⅠ和PSⅡ承担着电子传递和氢离子(质子)传递任务。
当电子到达PSⅡ系统时,PSⅡ上的放氧复合体(oxgen-evolving complex)会将一分子水分解为两分子氢离子和一分子氧气。
当电子达到质体醌(PQ)通过循环机制,又在类囊体内释放一个氢离子。
如此,就在类囊体的两侧建立氢离子浓度差(内高-外低)。
细胞色素b6f复合体将质子醌中的电子又传给质体蓝素(PC),而后者又将电子传递给PSⅠ。
而PSⅠ又经过一系列流程,最终将电子交给铁氧还蛋白(Fd),而电子最终在还原酶的处找到自己的归宿。
但是,电子在传递链上走了一趟以后,原本类囊体内外的氢离子浓度是一致的,而现在变成囊内氢离子浓度高于囊外。
而在囊膜上,有一种叫做ATP合成酶的特殊结构蛋白。
它上面有氢离子通道,当氢离子因为浓度差,而流向类囊体膜外时,它可合成ATP。
而ATP是生物化学能界的流通货币,生物通过使用ATP可以完成一系列耗能的代谢反应,比如合成糖类等。
于是,光合作用也就完成了!
结语
从上述过程可以看到,光合作用看似很普通,实则是生物亿万年“打造”的结果。
除了我们常见的植物可以进行光合作用,其实,细菌也可以。
实际上,按照进化学观点,细菌等更原始简单的生物,是最早一批进行光合作用的生物。
后来的蓝藻(原核生物)则是在其基础上,一点点继承的,只不过蓝藻选择了释放氧的方式(细菌光合作用不产氧气)。
植物们又是从蓝藻身上继承了其光合作用的本领的,只不过植物以叶绿体的方式,来高效完成该过程(蓝藻没有叶绿体结构)。
地球上的食草动物们,则是依靠消化植物所产生的有机物来存活。
食肉动物,又通过依赖食草动物过日子。
没有光合作用的生命故事,是黯然失色的,是没有希望的!